Ill-Posedness of sublinear minimization problems
نویسندگان
چکیده
منابع مشابه
Generic Well-posedness in Minimization Problems
The goal of this paper is to provide an overview of results concerning, roughly speaking, the following issue: given a (topologized) class of minimum problems, “how many” of them are well-posed? We will consider several ways to define the concept of “how many,” and also several types of well-posedness concepts. We will concentrate our attention on results related to uniform convergence on bound...
متن کاملInverse problems, Ill-posedness and regularization - an illustrative example
Whenever one is confronted with the necessity to measure some quantities, which are not accessible directly, however, are linked via a mathematical model to some measurement data, one has to solve an inverse problem. In this context we speak of a direct problem, when expected measurement data are calculated from a mathematical model, when the not directly accessible quantities are given and, on...
متن کاملIll-conditionedness Needs Not Be Componentwise near to Ill-posedness for Least Squares Problems
The condition number of a problem measures the sensitivity of the answer to small changes in the input, where “small” refers to some distance measure. A problem is called illconditioned if the condition number is large, and it is called ill-posed if the condition number is infinity. It is known that for many problems the (normwise) distance to the nearest ill-posed problem is proportional to th...
متن کاملOn Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We deene local ill-posedness of a nonlinear operator equation F(x) = y 0 in a solution point x 0 and the interplay between the nonlinear problem and its linearization using the Fr echet derivative F 0 (x 0). To nd an appropriate ill-posedness concept for 1 the linearized equation ...
متن کاملPiecewise Differentiable Minimization for Ill-posed Inverse Problems
Based on minimizing a piecewise differentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Egyptian Mathematical Society
سال: 2011
ISSN: 1110-256X
DOI: 10.1016/j.joems.2011.09.004